

SoftwareX Article Template

Web Generator: an open-source software for synthetic web-based user interface dataset generation.

Andrés Soto1,2, Dagoberto Mayorca1,2,3, Héctor Mora1,2, Jaime A. Riascos1,2,3

1Corporación Universitaria Autónoma de Nariño, Pasto, Colombia.
2SDAS Research Group, Pasto, Colombia.
3Universidad Mariana, Pasto, Colombia.
agsoto@protonmail.com

Abstract.
Recently, Machine Learning algorithms are employed to automate several processes, including software

development. However, this action demands large datasets for training these algorithms. To our

knowledge, there is no tool for generating synthetic datasets that contain HTML objects (interfaces,

codes, wireframe.) Thus, we present the Web Generator, a software designed to mainly provide web

pages, designs, and content based on the Bootstrap frontend framework. The software delivers markup

code, screenshots, and labels for web elements. With this software, we aim to generate enough

material for training and exploring the Machine Learning approach for automatically web design and

development.

Keywords:
Synthetic dataset; Dataset generation; HTML; Bootstrap;

Required Metadata

Current code version
Table 1 – Code metadata (mandatory)

Nr Code metadata description Please fill in this column

C1 Current code version 0.1

C2 Permanent link to code/repository used of
this code version

https://github.com/agsoto/webgenerator

C3 Code Ocean compute capsule None

C4 Legal Code License GPL v3

C5 Code versioning system used git

C6 Software code languages, tools, and
services used

Python, Javascript, CSS.

C7 Compilation requirements, operating
environments & dependencies

 Requirements:
- Chromium / Chrome Browser > 80.0
- Selenium Web Driver for Chromium = Browser version
- Python >= 3.7
- Pip >= 20.0.2

1

mailto:agsoto@protonmail.com
https://github.com/agsoto/webgenerator

Dependencies:

- selenium = 3.141.0
- colorharmonies = 1.0.5
- dominate = 2.4.0
- utils = 1.0.1
- python_lorem = 1.1.2
- palettable = 3.3.0
- webdriver_manager = 2.3.0
- libsass = 0.20.1
- Pillow = 7.2.0
- Selenium-Screenshot

C8 If available Link to developer
documentation/manual

C9 Support email for questions agsoto@protonmail.com

1. Motivation and Significance

One of the critical aspects of the software and web development process is the design and

implementation of Graphical User Interfaces (GUIs). These interfaces act like bridges between users and

the computer actions, integrating the content consumed and analyzed by the user [1]. Given the visual

nature of GUIs, the design should consider objects distribution, color theory, legibility, among others.

Additionally, GUIs require an understanding of human psychology to determine the best possible

interaction modes, which concerns the field of Human-Computer Interaction [2]. Developers usually

code interfaces in mark-up languages such as HTML or XML, which requires a deep understanding of the

instructions that can produce a visible result. In short, the user interface design and implementation are

costly tasks in software development [3].

In the latest years, there have been different strategies to assist developers in the GUI design and

implementation to minimize the production costs. Indeed, ongoing research uses algorithms to

automate or facilitate the codification of interfaces [4,5,6]. One of the most innovative approaches is to

use Deep Learning, evidencing promising results related to fully automated code generation based on

the interface's mockup or sketch. However, one limitation is the dataset availability because these

algorithms usually require significant amounts of data to produce good results [7]. Thus, this software

aims to help web interface generation research by providing parametric algorithms that can generate

on-demand web pages with features and labels ready to use as datasets. Despite the vast number of

websites available, the particular frameworks, structure, technology, and general characteristics make it

challenging to discretize particular coded files and design features. Therefore, using publicly available

web pages as datasets requires a comprehensive effort mining and preprocessing the data.

As we mentioned before, it is necessary to use datasets to train and evaluate interface generation

methods. Thus, we reviewed some datasets, especially publicly available, for research in web content

and interface generation to confirm a synthetic data generation tool's relevance. Firstly, the RICO

dataset [8] is one of the most consistent datasets. It is composed of authentic mobile interfaces

screenshots with a component's hierarchy, interaction traces, and metadata. This dataset was generated

2

using data mining tools in several mobile apps from the Google Playstore to produce Data-Driven Design

Applications. Nevertheless, it is not suitable for web interface experimentation. Also, Pix2Code [7]

provides a dataset that contains different interface elements, but its nature requires a Domain Specific

Language (DSL), limiting the number of elements and dispositions in his content severely.

Similarly, in the REDRAW paper [9], the authors used a dataset generated through data mining and

stated the public release of it, but after two years of the paper’s publication, it is not available yet.

Finally, Sketched-Webpages-Generator [10] is the more similar software to ours. It focuses on

generating sketches rather than HTML code. For this reason, it makes use of a very different approach,

aiming to provide the variations presented in sketching and not in the distribution of elements or styling.

The named software could be used in a complementary way, merging functionalities at the code level.

Consequently, we developed a tool to generate datasets at will. We keep code level execution focus for

the first version to maximize flexibility until future features are developed. The software is provided with

a working example of execution ready to tweak the parameters, showing that the user should only

provide an instance of the WebLayoutProbabilities with corresponding values and an instance of

WebGenerator with those probabilities as parameters. Finally, calling the Generate method to produce a

single result.

2. Software Description

The primary generation focus is the mark-up code, not the styling itself. For that reason, we

used the popular front-end framework Bootstrap [11] to adopt the ready-to-use styling classes.

We tried to keep custom Cascade Styling Sheets (CSS) to a minimum, using only the essential

rules to rely almost entirely on the framework. The Dataset generation feature of Web

Generator takes only choices and probabilities as input, which will produce HTML components

(the most significant parts of the web page) and the elements (the secondary parts, usually with

the actual content). The Fig 1 shows graphically the generation process, which is described in

the following phases:

1) Generation choices: The algorithms choose a specific item of the choices given, including the

layout, its components, and the content. The variety of available components depends on the

defined classes in the corresponding modules. Specially layout probabilities can be set when

creating a new layout. The remaining probabilities for content are uniformly distributed for

every element in most cases. The choice is made using mainly the choices method of python’s

native random module. This way choices are made using cumulative weights provided for each

choice.

2) HTML Batch Generation: After getting specific generation choices, the constructor of layouts

generates a new HTML document with those specific choices for the layout components

(header, navbar, sidebar, and footer). The content generator then picks a random number of

different HTML elements to be appended to the layout's content container. The textual content

is generated using lorem ipsum text for every list, paragraph, and titles. Finally, the HTML nodes

are rendered into a text file in the drive.

3) Loop HTML files: The software creates a new instance of a web browser that will be managed

by Selenium. Every file is looped and opened with the browser instance to get a screenshot of

3

the web page with the defined options. The HTML elements are tagged, injecting a Javascript

with JQuery[12] snippet into the browser with the current file, detecting a previously

determined attribute, and the element's corresponding bounding box. Once the loop is over, the

element's coordinates and tags are saved to a JavaScript Object Notation (JSON) file.

Figure 1. Logical schema overview about the generation process.

Layouts: A layout represents a specific distribution of the main web page components as well as

the needed HTML document tags, including head, body, scripts, among others. There are five

types of layouts defined by the relationship of the sidebar with the header and footer. Figure 2

presents the layout types, where H represents the header element and the navbar, S the

sidebar, and F the footer.

Figure 2. Possible types of layouts. Each number in the picture corresponds to a specific type

and its respective elements to be rendered.

Elements: The software includes the principal components of Bootstrap's framework. These

composed elements can be constructed as programmable objects to be rendered later. Whether

component or element, every class has ultimately associated a mark-up tag, which can be set

attributes and tag nodes such as paragraphs, lists, divs, and any HTML tag. These elements

constitute the page's content and forms and are picked based on probabilities evenly among the

elements. When the automatic pick of elements happens, vertical and horizontal symmetry

rules are applied to maintain the design aesthetic.

2.1. Software Architecture

We try to keep interaction among modules as straightforward as possible, helping to the

extensibility and maintenance. Indeed, it is especially important because the software could

also be applied with different goals other than dataset generation, for instance, standalone

color palette or web page generation. We use the package Dominate [13] for the HTML

generation using object instances; that is why it is the most important package. The main

4

architectural pattern used is Blackboard, since initially, the majority of the components are

modules using others. The Fig. 3 shows the packages diagram. The most significant parts of the

software are divided into modules with logic relations and similar functionality. Base modules

are Randomization, Layout, Elements, and StyleManager .

Randomization: It integrates the probabilities values, choices, and functions to generate random

content and HTML elements. It uses random and lorem-python as dependencies.

Layout: The main element in this module is a class with inheritance from the dominant

document class. It contains the main components of the webpage (header, navbar, sidebar, and

footer), and the method allows to render the determined disposition of these components.

Elements: This module includes many classes that also use inheritance, in this case, from the

tags of Dominate package. Thus, each Bootstrap component has an equivalent class object

inside Elements.

StyleManager : This module is responsible for the CSS operations linked to the HTML generated

files. The current version generates a random color palette and uses it in Bootstrap variables,

generating a framework's custom distribution.

Figure 3. Packages diagram of the software

The core package integrates the base modules previously mentioned into more concrete ones to

make them easier to manage. Below we detail each module of the core package:

Webgenerator : The module with the same name of the project allows us to create a new

disposition of components of the webpage, internal content, color variation, among others. This

module integrates mainly the randomization, layout, and element modules.

5

FileManager : This module takes care of preparing the required folder structure and other

physical operations in the drive.

ScreenShutter : This module can iterate HTML files to generate screenshots and annotations of

the tagged elements through an instance of the Chrome / Chromium browser.

DataSetter : Finally, the module with the higher abstraction provides the batch generation of

HTML files and the management of the ScreenShutter capabilities.

2.2. Software Functionalities

● Dataset generation: Generate probabilistic HTML websites using user-defined probabilities for

the layout components and disposition. The software ultimately generates HTML files, images in

PNG format, and JSON annotation files with the tags for each web element contained in the

image. The color features allow us to generate color palettes and apply different color classes to

layout components, which are later compiled in the Bootstrap's CSS file. For the screenshot

feature, the user can set whether it should generate full-screen or a custom screen's size for the

capture.

● Html Generation: Layout and Elements modules lie on top of the Dominate package. Since it

follows the same logic as its main dependency, developers can generate Bootstrap's code

components to create instances of the corresponding objects.

3. Illustrative Examples

The generation of a dataset produces an output folder with CSS, js, HTML files, and image

folders. The root of the output folder contains the JSON files generated with the tags of the

HTML elements present in each screenshot. Fig. 4 shows a snippet of the resulting JSON. Inside

the CSS folder, the Bootstrap distribution file with the web page's color palette and another file

with the necessary CSS rules for the sidebar and extra required styling. The js folder contains the

required JQuery and Bootstraps Javascript files. Finally, HTML contains the markup files and

images of the screenshots generated. Fig 5. shows examples of the variations of color, size, and

distribution of the web page structure and content.

Figure 4. Example of the JSON file containing the tags of the HTML Elements.

6

Figure 5. Examples of the screenshots generated by web generator

4. Impact

The use of this tool allows researchers to customize their web interface datasets with minimal effort.

Thus, it facilitates the exploration of machine learning methods to generate new designs and code based

on mockups. The software features help reduce the time employed for dataset preparation and ensure

normalized batches in which diversity can also be increased to suit many related research problems. In

addition to being a research tool for web interface-related problems, users can employ the individual

modules with other aims. For instance, we can create educational software where the Web Generator

modules are the building blocks. Thus, the student could set the parameters for generating web

elements to and review the equivalent code generated.

5. Conclusions

We presented WebGenerator, a tool that allows researchers to generate synthetic web interfaces and

content quickly to consolidate datasets that can be used to train/test different algorithms and support

designers and developers in the web development process. The software structure allows the

extensibility and customization of web development activities. The software comes with different

generation options, such as probabilities of layouts and sections, size of screenshots, and color schemes.

Thus, we make possible the generation of datasets that suit the needs of the research. Given the

potential usage of this tool, we plan future iterations to develop new features to make a more robust

software.

Conflict of Interest

We wish to confirm that there are no known conflicts of interest associated with this publication

and there has been no significant financial support for this work that could have influenced its

outcome.

7

Acknowledgements
This work is supported by the Smart Data Analysis Systems Group - SDAS Research Group

(http://sdas-group.com).

References

[1] P. Bourque and R. E. Fairley,SWEBOK: guide to the software engineering body of knowledge. IEEE Computer
Society, 2014. OCLC: 880350861.

[2] W. O. Galitz,The essential guide to user interface design: an introduction to GUI design principles and
techniques. John Wiley & Sons, 2007.

[3] A. Schramm, A. Preußner, M. Heinrich, and L. Vogel, “Rapid UI Development for Enter-prise Applications:
Combining Manual and Model-Driven Techniques,” inModel DrivenEngineering Languages and Systems(D.
Hutchison, T. Kanade, J. Kittler, J. M. Klein-berg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,
B. Steffen,M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, D. C. Petriu, N. Rou-quette, and . Haugen,
eds.), vol. 6394, pp. 271–285, Berlin, Heidelberg: Springer BerlinHeidelberg, 2010.

[4] T. A. Nguyen and C. Csallner, “Reverse Engineering Mobile Application User Interfaces with REMAUI (T),” in2015
30th IEEE/ACM International Conference on AutomatedSoftware Engineering (ASE), (Lincoln, NE, USA), pp.
248–259, IEEE, Nov. 2015.

[5] Y. Han, J. He, and Q. Dong, “CSSSketch2code: An Automatic Method to Generate WebPages with CSS Style,”
inProceedings of the 2nd International Conference on Advances in Artificial Intelligence - ICAAI 2018, (Barcelona,
Spain), pp. 29–35, ACM Press, 2018.

[6] P. F. F. Pereira, “Gerador de código HTML a partir de maquetes,”IEEE, p. 105, 2018.

[7] T. Beltramelli, “pix2code: Generating Code from a Graphical User Interface Screenshot,”arXiv:1705.07962 [cs],
May 2017. arXiv: 1705.07962.

[8] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li, J. Nichols, and R. Ku-mar, “Rico: A mobile app
dataset for building data-driven design applications,” inPro-ceedings of the 30th Annual ACM Symposium on User
Interface Software and Technology,pp. 845–854, 2017.

[9] K. Moran, C. Bernal-Cárdenas, M. Curcio, R. Bonett, and D. Poshyvanyk, “Machi-ne Learning-Based Prototyping
of Graphical User Interfaces for Mobile Apps,”ar-Xiv:1802.02312 [cs], Feb. 2018. arXiv: 1802.02312.

[10] “Sketched-Webpages-Generator”. https://github.com/Dev-Tarek/sketched-webpages-generator. Accessed:
17/09/2020.

[11] “Bootstrap Framework”. https://getbootstrap.com/. Accessed: 17/09/2020.

[12] “JQuery”. https://jquery.com/. Accessed: 17/09/2020.

[12] “Dominate Python Library”. https://pypi.org/project/dominate/. Accessed: 17/09/2020.

8

http://sdas-group.com/

Current executable software version

Table 2 – Software metadata (optional)
Nr (Executable) software metadata

description
Please fill in this column

S1 Current software version 0.1

S2 Permanent link to executables of this
version

https://github.com/agsoto/webgenerator

S3 Legal Software License GPL v3

S4 Computing platforms/Operating Systems
Linux, OS X and Microsoft Windows

S5 Installation requirements &
dependencies

 Requirements:
- Chromium / Chrome Browser > 80.0
- Selenium Web Driver for Chromium = Browser version
- Python >= 3.7
- Pip >= 20.0.2

Dependencies:
- selenium = 3.141.0
- colorharmonies = 1.0.5
- dominate = 2.4.0
- utils = 1.0.1
- python_lorem = 1.1.2
- palettable = 3.3.0
- webdriver_manager = 2.3.0
- libsass = 0.20.1
- Pillow = 7.2.0
- Selenium-Screenshot

S6 If available, link to user manual - if
formally published include a reference to
the publication in the reference list

S7 Support email for questions agsoto@protonmail.com

9

https://github.com/agsoto/webgenerator

